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Neural network for female mate preference,
trained by a genetic algorithm

Masashi Kamo, Takuya Kubo and Yoh Iwasa
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812- 81, Japan

In some animals, males evolve exaggerated traits (e.g. the peacock's conspicuous tail and display) because
of female preference. Recently Enquist and Arak presented a simple neural network model for a visual
system in female birds that acquires the ability to discriminate males of the correct species from those of
the wrong species by training. They reported that the trained networks were attracted by `supernormal
stimuli' where there was a greater response to an exaggerated form than to the images used as the correct
species for training.They suggested that signal recognition mechanisms have an inevitable bias in response,
which in turn causes selection on signal form.We here examine the Enquist and Arak model in detail. A
three-layered neural network is used to represent the female's mate preference, which consists of 6�6
receptor cells arranged on a regular square lattice, ten hidden cells, and one output cell. Connection
weights of the network were modi¢ed by a genetic algorithm, in which the female's ¢tness increases if she
accepts a conspeci¢c male but decreases if she accepts a male of a di¡erent species or a random image.We
found that: (i) after the training period the evolved network was able to discriminate male images. Female
preference evolves to favour unfamiliar patterns if they are similar to the images of the correct species
(generalization); (ii) the speed and the ¢nal degree of learning depended critically on the choice of the
random images that are rejected. The learning was much less successful if the random images were
changed every generation than if 20 random images were ¢xed throughout the training period; (iii) the
male of the same species used for training achieved the highest probability of being accepted by the trained
network. Hence, contrary to Enquist and Arak, the evolved network was not attracted by supernormal
stimuli.

Keywords: generalization; genetic algorithm; neural network; sensory bias; supernormal stimulus;
sexual selection

1. INTRODUCTION

Males of some animals have exaggerated traits, which are
apparently disadvantageous to the holder's survival. A
classical example is the tail of the male peacock. Darwin
(1871) suggested that males develop a structure costly to
produce and maintain because females have a propensity
to choose mates with such exaggerated traits. After
Darwin, numerous experimental and theoretical studies
have been carried out on female mate preference
(reviewed by Andersson 1994; Moller 1994; Andersson &
Iwasa 1996).

Fisher (1930) was the ¢rst to succeed in explaining the
evolution of female preference for an exaggerated male
trait. If females in the initial population have a small
propensity to choose mates with a longer tail, then a
female with a stronger preference than the population
average can enjoy an indirect bene¢t of producing sexy
sons who inherit their father's g̀ood looking' long tail. As
a consequence, exaggerated male traits and strong female
preference will coevolve simultaneously, resulting in Fish-
erian runaway selection (Fisher 1930; Lande 1981;
Pomiankowski et al. 1991; Pomiankowski & Iwasa 1993;
Iwasa & Pomiankowski 1995). According to this argu-
ment, any male trait and a female preference for it can
coevolve.

In contrast, Zahavi (1977) noted that male traits used
for sexual selection are often good indicators of male
quality, revealing physical strength, mental ability and
resistance to parasites, traits that are di¤cult to determine
directly. Avisible male trait can be used by females in their
mate choice, when only a really strong male can a¡ord to
produce and maintain it. The peacock's tail is a trust-
worthy signal of a good and strong male simply because it
is a costly handicap to the holder (Hamilton & Zuk 1982;
Grafen 1990; Iwasa et al. 1991; Iwasa & Pomiankowski
1994).

A third theory emphasizes the inherent bias of the
sensory organ (Kirkpatrick & Ryan 1991; Ryan & Keddy-
Hector 1992). If females are attracted by stronger stimuli,
such as a louder call or a longer tail, then males may
evolve to exploit that sensory bias by exaggerating signals.

Why is there bias in sensory organs? Enquist & Arak
(1993) and Arak & Enquist (1993) developed a simple
neural network model to imitate a signal recognition
system that is adjustable by training, and demonstrated
that the trained network has an inherent bias. The neural
networks had an arti¢cial retina on which simple bird-like
images were presented. They were trained to discriminate
two simpli¢ed images: one represents a conspeci¢c male
bird with a long tail (¢gure 1c), and the other pattern
with a short tail for the male of a wrong species (¢gure
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1b). After the networks were trained to discriminate
between them, some new images were presented. The
network responded to some of the novel images that are
similar to the stimuli used in training, which implies
g̀eneralization' (Guttman & Kalish 1956; Hanson 1959).
In some cases, a new stimulus gave a response even
stronger than the image of the correct species used in the
training, and hence it is a s̀upernormal stimulus' (Staddon
1975). These images had a tail longer than the correct
stimulus, and were thus an exaggerated form (¢gure 1d).
The reaction for signals of di¡erent tail length had a
peak shifted from the one that had been used in training.
Enquist & Arak suggested that supernormal stimuli and
`peak shift' are a natural outcome of the sensory
mechanism formed by training, and that a biased signal
recognition system might be the basic mechanism for the
evolution of exaggerated male secondary traits.

In this paper, we examine Enquist & Arak's (1993)
system carefully and attempt to con¢rm their results by
training a neural network by genetic algorithm. After
training, the network was able to distinguish males of the
correct species and wrong species. In addition, the trained
neural networks show the greatest response to the pattern
used for training, implying that there was no supernormal
stimuli. We will discuss possible reasons for the discre-
pancy between Enquist & Arak's and our study.

2. NEURAL NETWORK MODEL

Neural networks are mathematical models imitating the
function of a network of neurons (neural cells) in a
computer. Neural network can learn to distinguish
patterns. Each neuron, the unit of a neural network,
receives n input signals x1, x2, . . . , xn with weights w1,
w2, . . . , wn that may di¡er between inputs. A negative
weight (wi50) implies that the corresponding input has

an inhibitory e¡ect. The simplest deterministic version of
the model assumes that the neuron responds by outputting
1when the weighted sum of the input signals is larger than
a threshold denoted by h. If not, it outputs nothing. Due to
noises from various sources, a neuron is likely to respond
stochastically with a probability given by a sigmoid func-
tion of the sum of the input signals. We assume that the
probability of getting the reaction 1 from the neuron is a
sigmoid function:�

probability of
output=1

�
� 1

1� exp ÿa
�Pn

i�1
wixi ÿ h

��� (1)

Figure 2 is the neural network used in Enquist & Arak
(1993) and in the present paper. It consists of an arti¢cial
retina of 6�6 receptor cells, 10 cells in the hidden layer,
and one output cell. Each cell in one layer is connected to
every cell in the next layer, each connection being accom-
panied by a weight. The learning progresses by changing
the weights appropriately. Male bird-like patterns were
projected onto the retina (receptor cell layer), and a male
is accepted by the female network as a mate when a posi-
tive response from the output cell is given.

The images used for training and testing of the networks
are shown in ¢gure 1 as ¢lled squares on a 6�6 retina.
The bird-like image ¢gure 1c with tail length two was
de¢ned as a male of the same species, and the image of
¢gure 1b with tail length one was considered as a male of
a di¡erent or wrong species. The correct response of the
female is to accept ¢gure 1c and to reject ¢gure 1b.

Random images were also used as reject images.
Enquist & Arak did not describe clearly how to generate
the random images they used. We made random images
with ¢ve to eight ¢lled squares (¢gure 3). We chose the
number of ¢lled squares with care to avoid the situation
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Figure 1. Images used during the training period and the test period. During the training period, the image (c) of tail length two
was used as a right male, and the image (b) of tail length one was used as a wrong male, and they were presented to the network
with shifting and rotations, together with 20 random images. During the test period, various images illustrated in this ¢gure were
presented to their network without changing connecting weights.
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in which the total number of ¢lled squares can be used as a
useful cue to distinguish correct and wrong species.

When presented to the networks for training, both the
patterns of tail length two (the correct species) and tail
length one (wrong species) were moved and rotated on
the retina, but the 20 random images were ¢xed. Consid-
ering the number of di¡erent positions and orientations,
there are 48 possible con¢gurations of tail length two,
and 16 possible patterns of tail length one.

(a) Genetic algorithm learning
Back propagation is the learning method most

frequently adopted when correct reactions (teach signals)
of the network are given (Welstead 1994). Weights are
appropriately changed to decrease the di¡erence between
the output by the network and the teach signal. However,
we adopted an alternative learning method, called genetic
algorithm (Davis 1990; Michalewicz 1994), that was used
in the modelling evolution of signalling (Arak & Enquist
1993; Enquist & Arak 1993; Johnstone 1994). Recently, a
neural network model learned by both genetic algorithm
and back propagation was applied to a study of the arti¢-
cial life (Toquenag et al. 1995).
We consider a string of connection weights of a neural

network as one full set of genes (or genome), which can
specify an individual network.We then consider a popula-
tion of 20 individuals (or 20 strings of connection weights).
Selective reproduction and mutation of these individuals
allow the evolution of the network to make the neural
network discriminate the images. The procedures are as
follows.

1. Initial con¢guration. The initial values of the connec-
tion weights were generated by random numbers
uniformly distributed between 71 and 1.

2. Calculating scores. In every generation, various images
were presented to each of the 20 networks in the popu-
lation. Each network (or individual) experienced 150
input images per generation. Fifty of these images
were correct species, which are chosen randomly (with
resampling allowed) from 48 possible con¢gurations,
considering shift and rotation. Another 50 images are
on the wrong species, which are chosen randomly from
16 possible con¢gurations. The remaining 50 were then
randomly sampled from 20 possible random images in
¢gure 3. When the network responded (i.e. the output
was 1) to the image of the correct species, it gained one
score. If instead the network responded to the image of
the wrong species or to random images, then its score
was reduced by one.

3. Reproduction. When each of 20 networks in the popu-
lation had experienced exposure to 150 images, we
calculated the accumulated score of each network. The
ten networks with the highest score were allowed to
have two copies of themselves in the next generation.
The ten networks with the lowest scores had no possibi-
lity of contributing to the next generation. In this way,
the population size was kept to 20 all the time. In terms
of population genetics, we adopted a `truncation selec-
tion scheme with respect to the score.

4. Mutation then occurred on the connection weights.The
probability of mutation for a particular weight was one-
tenth and when mutation occurred, an increment
drawn from a normal distribution (mean�0, standard
deviation�0.4) was added to the weight.

These steps were repeated for 10 000 generations
(training period). The networks converged to some kinds
of equilibrium by then, and the average responses to
learning tasks did not change so much even if the training
period was doubled. The iteration of these procedures
could develop a network that can discriminate males of
the same and di¡erent species.

(b) Test period
After the training period, we presented various images,

to the educated networks without modifying the weights,
and examined their reaction to the test images. In the test
period, the connection weights were ¢xed. The test images
included the ones used in the training, but also those that
have never been shown to the networks, as illustrated by
¢gure 1a and ¢gures 1d7g.

To count the strength of reaction of a network to an
image, we chose 100 images randomly among all the
patterns generated by the shifting and rotation of the
original image. We then calculated the àverage response',
the number of times in which the network gave output 1
among 100 trials. To examine the reaction of a particular
pattern to `random images', we examined 100 random
samples (with resampling allowed) from the same 20
random reject images ¢xed throughout the training
period.

In addition to these standard training procedures, we
also examined the several di¡erent training schedules, as
explained below.
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input layer

hidden layer

output layer

Figure 2. The structure of the network. Input image was
regarded as a male's pattern. A female's recognition system is
modeled as a three-layered neural network. The input layer
includes 6� 6 receptor cells arranged on a two-dimensional
square lattice, which are connected to ten cells in the hidden
layer, and then to a single output cell. Each cell follows
stochastic rule given by equation (1), where connection
weights are modi¢ed during the training period (modi¢ed from
Enquist & Arak 1993).
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3. RESULTS

(a) Average response
In the initial population of 20 networks of randomly

generated connection weights, the average response
di¡ered greatly between networks, but were similar
between di¡erent images. Some networks responded to
most of the input images, whereas others rejected most of
the images. After the training period the average response
became similar between networks in the population and
di¡erent between images.

Figure 4a illustrates the average response of 100 trials
for each of the 20 networks in the ¢nal population. The
average response for the pattern with tail length two
(correct species) was quite high (98.1%), and that for the
pattern with tail length one (wrong species) was very
small (2.6%).

(b) Absence of supernormal stimuli
In the test period, various images other than those used

for training were presented to the networks (¢gure 1), but
no image had a higher average response than the images of
the tail length two (¢gure 4a). The average response to a
pattern with a longer tail (tail length three) than the
conspeci¢c male (tail length two) was quite high, but was
lower than that of the conspeci¢c male (Wilcoxon signed
rank test, z�73.926, p50.0001). We did not therefore
observe supernormal stimuli. This is very di¡erent from
the result of Enquist & Arak (1993), in which the average
response was always higher for an image with a longer tail.

Several replicates were calculated for the same set of
parameters. The results described above held in all the
cases. The connection weights of the networks obtained in

the ¢nal population were totally di¡erent, but they
behaved in a very similar way.

As we examined only patterns with tails of integer
length (e.g. tail length 1, 2, and 3), we may not be able to
detect a peak shift of a small magnitude even if it exists. To
overcome this di¤culty, we examined responses of the
trained network to patterns with a tail of non-integer
length. For example, a pattern of tail length 1.75 implies a
pattern with tail length 1 appended by a g̀rey' unit with
intensity of 0.75. Figure 4b illustrated the results, which
shows the pattern with tail length two (correct species)
caused the highest average response of the network, and
hence there was neither peak shift nor supernormality.

(c) Trajectory of learning procedures
Figure 5 illustrates the time-course of the average

response of a population to images of three classes: the
images of correct species, those of wrong species and
random images. In every generation 100 images from
each of these three classes were presented to the networks,
and the average responses in ¢gure 5 are the proportion of
times at which the network responded positively. The line
with symbol II is for the response to the images of correct
species (tail length two), which increases with time and
reached a level of almost 100% at the end of the training
period. The line with symbol I is for the average response
of the network to the images of wrong species (tail length
one), which became very low and close to zero. The reac-
tion to random reject images with symbol R also became
lower with time.

The broken line with symbol III shows the response by
the network to the images of tail length three (with shift
and rotation). The responses of the network to this class of
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Figure 3. Twenty random images used for training. These 20 images are reject images used in training period and test period. The
number of ¢lled squares ranged from ¢ve to eight. If we generate di¡erent random reject images every generation, instead of a ¢xed
set, the speed of the learning of the network was much slower.
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images were just measured but not used for training the
network (unlike the responses indicated by the other
three lines).

The response to the image of tail length three wildly
£uctuated with time but was consistently lower than the
response to the image of tail length two (correct species).
Hence there was no indication that supernormal stimuli
might cause a stronger response than the stimuli used for
training.

(d) Di¡erent choice of random images
In the standard procedures of training, we ¢xed 20

random images and used them as reject images
throughout the training period. Alternatively, we may
generate di¡erent random images in every generation.
Figure 6a illustrates the average reaction of the network
trained with such random reject images.The average reac-
tion for the image of the conspeci¢c males was 100%.
However, the average response for the image of the
wrong species was not small, remaining at around 20%,

even after 10 000 generations. The average reaction to
random images remained at 60%. Hence we can conclude
that the learning was not as e¡ective if the random images
changed in every generation.

Second, in the standard training procedures, we used 20
random images that include images of ¢ve to eight ¢lled
squares. This is so that the network cannot use the total
number of black squares for the purpose of distinguishing
the images.

We have also trained using 20 random images, which all
have ¢ve ¢lled squares. The results in ¢gure 6b do not
show clear di¡erences from the standard training proce-
dure of random images of ¢ve to eight ¢lled squares
(¢gure 4a). However, if random reject images are of two
¢lled squares only, the trained networks show a similar
but smaller response to some images with larger number
of ¢lled squares (¢gure 6c). For example, the di¡erence
between (c) and (f ) in ¢gure 6c was not signi¢cant
(Wilcoxon signed rank test, z�70.784, p�0.4331).

Third, we have done training the networks without
random images. The results are shown in ¢gure 6d. The
average response to the correct species was again signi¢-
cantly higher than that to the other images (Wilcoxon
signed rank tests with Bonferroni adjustment,
jzj> 3:922, p < 0:0026). Interestingly, the average
response to the wrong species (b) was very low, but the
responses to unfamiliar patterns were higher than the
case random reject images were used.We suspect that this
enhanced acceptance rate might be related to the reduced
total number of reject images used during training.

(e) Di¡erent number of images to present per
generation

In the standard training procedure, each network
experiences 150 images every generation. We also exam-
ined cases with fewer images per generation for training.
In a particular case, for example, we presented all images
once per generation, so that 48 images of the correct
species (including shift and rotation), 16 images of the
wrong species (including shift and rotation) and 20
images of random reject images. The learning progressed
somewhat slower than the standard training procedures.
Interestingly, networks that accepted all the patterns
increased and dominated the population temporarily, but
then slowly disappeared. The ¢nal outcome of the evolu-
tion was almost the same as the standard training
procedures.

4. DISCUSSION

There was a major di¡erence between the network
trained in the present paper and the one reported in
Enquist & Arak (1993). We did not observe supernormal
stimuli, as illustrated in ¢gure 4a and 4b.

As the network structure is exactly the same in Enquist
& Arak's study and ours, the di¡erence must be due to the
training procedures. From the comparison, we must
conclude that Enquist &Arak's (1993) networks might
have been trained less than perfectly. However, Enquist &
Arak did not describe in detail the procedures they used
for training the network. In the following we would like
to list potential processes that might have caused the
di¡erence in the e¡ectiveness of the learning processes,
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Figure 4. The average response of the trained network. (a)
The acceptance rate was low (2.6%) for a wrong species image
(b), and high (98.1%) for a right species image (a). (b) The
reaction of the trained network to patterns with intermediate
tail length. To express patterns with a non-integer valued tail
length, a pattern of tail length 1.75 implies a pattern with tail
length one appended by a `grey' unit with intensity of 0.75.
Horizontal axis is the tail length (1, 1.25, 1.5, . . ., 3). The
pattern with tail length two (used as the correct signal in
training) caused the highest average response of the network,
and hence there was neither peak shift nor supernormality.
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irrespective of their applicability to Enquist & Arak's
training procedures.

The ¢rst and simplest possibility is that they stopped
training before the network achieved the full ability to
distinguish the patterns. The second possibility is that
they might have used a selection scheme that was less e¤-
cient than the truncated selection adopted in our training
scheme. If we used a genetic algorithm with the ¢tness
proportional to the contribution to the following genera-
tion, the training would be slower than in the case in
which ten networks with the higher score remain and the
other ten of lower score are discarded.

Third, the choice of random reject patterns used during
training requires some care. In our training scheme, when
we made random images we chose the number of ¢lled
squares so that the networks could not distinguish images
based on the total number of ¢lled squares. If we used
random images including only a few ¢lled squares,
images with two wings longer than the correct species
were accepted by the network nearly as often as the
correct species (¢gure 6c). Training without using random
images at all showed no indication of supernormality but
generally high response to unfamiliar images (¢gure 6d).

Fourth, we ¢xed 20 random images that we used as
reject images throughout the training and test periods
(¢gure 3). If instead we used random images generated
each generation, the learning e¤ciency was not very high
(¢gure 6a).

Fifth, there are other relatively minor di¡erences
between Enquist & Arak and our networks. For example,
the sigmoid curve for each neuron used by Enquist &
Arak was an integral of a normal distribution, which is
di¡erent from equation (1) used in our training, the latter
being more commonly used in neural network models

(Welstead 1994). However, we do not expect this di¡erence
is the major reason of the di¡erence in e¤ciency in
training.

Sixth, a possible reason of the absence of supernormality
is that the neural network might have been overtrained.
Overtraining would reduce the generalization ability
lower. To examine this possibility we ran a simulation in
which four input patterns to accept (among 48 con¢gura-
tions considering shift and rotation) and one reject pattern
(among 16 con¢gurations) were not shown to the network
during training.We then examined the average response of
the networks at di¡erent times (1000, 2000, 3000, 4000
and 10 000 generations). The reaction to these images
excluded in training £uctuate considerably, but the trend
was clear: as training proceeds, the networks came to
accept correct stimuli more often, hence generalization
tendency increased rather than decreased. On the other
hand they also accept one image of tail length one
(wrong species) throughout the training period. In short,
there was no indication of overtraining because the
tendency of generalization did not decline with time.

In the present study, the average response to the image
of tail length three was higher than other images except
the one used for training (tail length two) (Wilcoxon
signed rank tests with Bonferroni adjustment,
jzj> 3:922, p < 0:0004). The image of tail length three
was accepted because it resembles the conspeci¢c male
image. This illustrates that recognition by a trained
neural network also shows generalization.

Generalization is a common property of recognition
systems that classify unfamiliar stimuli into familiar cate-
gories. A classical example of generalization is that of a
pigeon trained to perform a behaviour if it observed a
light bulb of wave length 550 M� (Guttman & Kalish
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Figure 5. The average response changing with time during training period. Four lines are the response for the images of the correct
species with tail length two (with symbol II), the image of a wrong species with tail length one (I), and random images (R). The
average response is the fraction of times when the network output 1 among given classes of images. Connection weights were modi-
¢ed by genetic algorithm. The curve of a broken line (with symbol III) is the average response to the image of tail length three.
The response to this class of images was not used for training.
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1956; Hanson 1959). Naturally the response of the pigeon
was highest when stimulated by the same colour. However,
the pigeon also responded to light of similar wave length.

The results obtained for the present study can be under-
stood intuitively in the following way (¢gure 7). The
positive training by images of the correct species results
in the network favouring patterns similar to them, illu-
strated by a broken line in ¢gure 7. The resulting reaction
of the trained network has some breadth around the peak
reaction corresponding to the image of the correct species.
The curve is symmetric around the peak, and hence the
generalization is not biased. On the other hand, negative
training by images of wrong species males would make
the network avoid patterns similar to the image of wrong
species, as indicated by another line in ¢gure 7. A combi-
nation of these two tendencies would be simply the sum of
the two curves, resulting in the observed pattern of the
average responses to the tail images of di¡erent tail
length (¢gure 7). Spence (1937) proposed a similar idea:
a combination of positive and negative generalizations
might explain an animal's response after training.

If this simpli¢ed picture holds, we may be able to infer
the generalization pattern when choices of male images for
correct and wrong species are di¡erent from the one
adopted in the present paper. For example, suppose the
images of tail length three are de¢ned as conspeci¢c
species males and those of tail length one are de¢ned as
wrong species males. The networks can probably discrimi-
nate these two classes of images almost perfectly and the
average response to the images of tail length four will be
high, but probably not higher than the reaction to conspe-
ci¢c pattern (tail length three). Average response to the
pattern of tail length two will be intermediate because it
is a¡ected by both the positive generalizations of the
conspeci¢c pattern of tail length four and the negative
generalization of tail length one. Although the distances
from the optimum (tail length three) of tail length two
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Figure 6. The average response of the trained network when
di¡erent training schemes were adopted. (a) Di¡erent random
images were chosen each generation. (b) All the random reject
patterns have ¢ve ¢lled squares, but are ¢xed throughout the
training period. (c) All the random reject patterns have two
¢lled squares. but are ¢xed throughout the training period.

The notations and symbols are the same as in ¢gure 4a. The
pattern with two longer wings (f ) caused a similar response to
the conspeci¢c (c). (d) Training without using random reject
pattern at all. The trained network tends to accept unfamiliar
patterns at a higher rate than in the standard training proce-
dure. These ¢gures demonstrate the importance of the choice of
random reject patterns.
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Figure 7. A scheme of generalization, summarizing the result
of the learning simulation in the present paper.
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and tail length four are the same, the acceptance rate was
di¡erent. In this case, sensory bias could be more
apparent. Whether the scheme in ¢gure 7 can work in
this or other situations will be an important subject of
future study.

Whatever the reasons, we did not see supernormality in
spite of our e¡ort to reproduce the same procedures
described in Enquist & Arak (1993), in which unfortu-
nately the computational procedures were not explained
well. In the present paper, we tried to present our work in
su¤cient detail that any interested reader can redo our
training procedures. The case in which we have come
closest to that reported in Enquist & Arak may be the
case in which the network was trained with additional
random reject patterns of very few ¢lled squares, but
even then the average reaction of an image with two
longer wings ((f ) in ¢gure 6c) was not higher than the
correct images ((c) in ¢gure 6c). We must conclude that
we have not obtained a convincing case of supernormality
for various modi¢cations.
Inspired by Enquist & Arak's pioneering work, there

have been developed numerous theoretical studies on the
property of sensory systems that are adjusted by training
procedures (Johnstone 1994; Enquist & Arak 1994; Arak
& Enquist 1995). Using the same models as Enquist &
Arak (1993), Arak & Enquist (1993) trained networks to
discriminate £owers that had petals of di¡erent lengths,
which resulted in a bias in pollinators' preference. The
evolution of symmetrical visual patterns was discussed in
Enquist & Arak (1994) and Johnstone (1994). Although
these works have received some criticisms as being too
simplistic (Cook 1995; Dawkins & Guilford 1995), we
believe that modelling preference and choice systems as a
simple neural network that can be trained through experi-
ences is a very promising approach in the study of
biological signals. However, to derive robust and useful
conclusions, it is important to examine the training proce-
dures carefully, as we have done in this paper.
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